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Compared to other available methods, ac dielectrophoresis is particularly well-suited for the manipulation 
of minute particles in micro- and nano-fluidics. The essential advantage of this technique is that an ac 
field at a sufficiently high frequency suppresses unwanted electric effects in a liquid. To date very little 
has been achieved towards understanding the micro-scale field-and shear driven behavior of a suspension 
in that, the concepts currently favored for the design and operation of dielectrophoretic micro-devices 
adopt the approach used for macro-scale electric filters. This strategy considers the trend of the field-
induced particle motions by computing the spatial distribution of the field strength over a channel as if it 
were filled only with a liquid and then evaluating the direction of the dielectrophoretic force, exerted on a 
single particle placed in the liquid. However, the exposure of suspended particles to a field generates not 
only the dielectrophoretic force acting on each of these particles, but also the dipolar interactions of the 
particles due to their polarization. Furthermore, the field-driven motion of the particles is accompanied by 
their hydrodynamic interactions. We present the results of our experimental and theoretical studies which 
indicate that, under certain conditions, these long-range electrical and hydrodynamic interparticle 
interactions drastically affect the suspension behavior in a micro-channel due to its small dimensions.  
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Compared to other available methods, ac dielectrophoresis is particularly well-suited for the

manipulation of minute particles in micro- and nano-fluidics. The essential advantage of this technique is 

that an ac field at a sufficiently high frequency suppresses unwanted electric effects in a liquid (for water, 

in particular, in the MHz-frequency range). To date very little has been achieved towards understanding

the micro-scale field- and shear driven behavior of a suspension in that, the concepts currently favored for 

the design and operation of dielectrophoretic micro-devices adopt the approach used for macro-scale

electric filters. This strategy considers the trend of the field-induced particle motions by computing the

spatial distribution of the field strength over a channel as if it were filled only with a liquid and then

evaluating the direction of the dielectrophoretic force, exerted on a single particle placed in the liquid.

However, the exposure of suspended particles to a field generates not only the dielectrophoretic force

acting on each of these particles, but also the dipolar interactions of the particles due to their polarization. 

Furthermore, the field-driven motion of the particles is accompanied by their hydrodynamic interactions. 

We present the results of our experimental and theoretical studies [1-4] which indicate that, under 

certain conditions, these long-range electrical and hydrodynamic interparticle interactions drastically

affect the suspension behavior in a micro-channel due to its small dimensions. As we shall demonstrate,

this leads to the formation and propagation of the concentration front in suspensions subject to a high

gradient electric field. This phenomenon provides a new method for strongly concentrating particles in

focused regions of micro-devices. Potential applications of the field-driven phenomena for advanced life

support and environmental monitoring & control systems for long-duration missions include a wide range 

of electro-micro-devices for multiphase separation, bubble manipulation, monitoring particulate and

microbial background environment, etc. However, our experiments aboard the NASA research aircraft

KC-135 [4] revealed that an unexpectedly pronounced effect of a relatively weak gravity imposes certain

limitations on the use of ground-based tests for predicting the operation of electro-technologies in micro-

gravity.
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Experimental ResultsExperimental Results
polystyrene spherical beads in DI water, 0.1% (v/v) µm1

0.27i0.45ß −−=Particle polarization 

Flow rate 0.24 pL/s to 9.6 pL/s; Re~10–5- 10–3

Source: Bennett,  Khusid, Galambos, James, Okandan, Jacqmin, Acrivos, Appl Phys Lett, 83, 2003
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Flowing Heterogeneous Mixture

Beads and bacterial cells (heat-killed staphylococcus aureus)

10 Vptp, 15 MHz Flow rate 0.24 pL/s to 9.6 pL/s

Source: Bennett,  Khusid, Galambos, James, Okandan, Jacqmin, Acrivos, Appl Phys Lett, 83, 2003
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ModelingModeling
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Comparison with Experiments
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MultiMulti-- Channel ApparatusChannel Apparatus
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Source:Markarian, Yeksel, Khusid, Kumar, Tin,  Phys. Fluids, 16, 2004
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Source:Markarian, Yeksel, Khusid, Kumar, 

Tin,  Phys. Fluids, 16, 2004
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Microsensor Technologies for Plant 
Growth System Monitoring

Chang-Soo Kim
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• Critical need of precise control of root zone; 
wetness, oxygen, nutrients, temperature.

• Ideal sensor configuration; miniaturization, 
multiple, array, low power, robustness.

• Thin film flexible microsensor strips for 
dissolved oxygen and wetness detection.

• Flexible microfluidic substrate for rhizosphere 
monitoring and manipulation.
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Experimental setup with a porous tube growth systemExperimental setup with a porous tube growth system

• Dissolved oxygen microsensor strip 
(3-electrode amperometric measurement 
by enwrapping the porous tube surface)

3 inches3 inches

• Wetness sensor strip (4-electrode conductivity 
measurement along the porous tube surface)
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Dissolved oxygen measurement on the porous tube surfaceDissolved oxygen measurement on the porous tube surface

• With a commercial oxygen 
probe;

- Reflecting O2 value of inner 
sol. at (+) pressures.

- Convergence to 20% value 
(air-sat. value) at (-) 
pressures.
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- Reflecting O2 value of inner 

sol. at (+) pressures.
- Scattering around 0% value 

at (-) pressures  (due to 
surface dryness and 
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Wetness measurement on the 
porous tube surface

Wetness measurement on the 
porous tube surface

• A steep decrease of surface impedance at the 
transition from (-) to (+) pressure.
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Experimental setup with a particulate growth system 
(Turface® 1-2 mm size particulate)

Experimental setup with a particulate growth system 
(Turface® 1-2 mm size particulate)

• Dissolved oxygen and wetness measurements within an 
unsaturated Turface® media.

• Repeated flooding and suction of nutrient solution using 
the embedded porous tube.
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Dissolved oxygen measurements within the particulateDissolved oxygen measurements within the particulate

• With a commercial 
oxygen probe;

- Convergence to O2 value 
of inner sol. with repeated 
flooding.

- Convergence to 20% 
value (air-sat. value) with 
suction.

• With a microsensor array;
- Better reflection of O2

value of inner sol. with 
repeated flooding.

- Better reflection of O2
value of inner sol. with 
repeated suction.0
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Wetness measurement within the particulateWetness measurement within the particulate

• Variations of the impedance due to repeated 
solution flooding and suction.
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Flexible microfluidic substrate for 
rhizosphere monitoring and manipulation 

Flexible microfluidic substrate for 
rhizosphere monitoring and manipulation 

• Root hair growth on 
the surface of a 
porous membrane 
with underlying 
microfluidic channels 
and microsensor 
arrays.

• Exemplary layout of 
planar microfluidic 
substrates.
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Conceptual growth system using flexible 
microfluidic rhizosphere substrate 

Conceptual growth system using flexible 
microfluidic rhizosphere substrate 

• Rhizosphere manipulation using embedded microchannels 
(e.g. change of nutrient solution composition).

• Rhizosphere  in situ monitoring using embedded microsensor 
arrays or remote optical sensors.

• Root growth pattern analysis using optical imaging.
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SummarySummary

• Demonstration of feasibility of microsensor for porous 
tube and particulate growth systems.

− Dissolved oxygen.
− Wetness.

• Flexible microfluidic substrate with microfluidic 
channels and microsensor arrays.

− Dynamic root zone control/monitoring in microgravity.
− Rapid prototyping of phytoremediation.
− A new tool for root physiology and pathology studies.
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